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1. Basic propositions. Let us consider the equation 

n 

Floquet’s [l-3 ] theory for this type equation leads to the following. 
Suppose that a fundamental system of solutions ~~(61 and y,(t) is known, 

then 

Y,(E) = y1(E + n) = w/l(~) + %zYz(E) 

Y,(E)= Y2(E + n)= aaiYl(E) + a22Y2(E) 

is also a fundamental system, and the Ci can be determined in such a way 

that X(t) = C,Y,(& + CzY;(J) will satisfy the relation X(5 + c-1 =pX([Ip 
where p is determined by the condition 

so that 

Let us 

1) The 
where the 

I an-P a12 

a21 a22-- P 
/ = 0, 

fJ=a4-A-z2-1, U = Cc (a, q) = (Ull -+- U2a) / :! 

now consider three possible cases. 

inequalities - 1 < a < 1 determine in the aq-plane a region 
solutions have the form 

432 
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2) In case 1 a 1 = 1, certain lines are determined on the aq-plane. 
Along these lines the solutions are of period R or 277. 

x KS + 4 = t x (E) 

3) Finally, the inequalities a > 1, a < - 1 determine a region in the 
a-lane. In this region the solutions can be expressed in the following 
forti: 

It is not difficult to see that in the first case the solutions are 
non-increasing, that in the third case they are unstable in the Liapunov 
sense, and that the region 1 a 1 < 1 is a region of stability of the 
initial equation. lhe curves 1 a 1 ‘= 1 determine the boundaries of the 
region of stability in the aq-plane. 

Below, we give investigations of the boundaries of the regions of 
stability for Equation (l.l), of the periodic solutions in the region of 
stability. 

2. Construction and properties of the boundaries of the 
regions of stability. Let _ 

in Equation (1.1). 

We shall seek the equation of the boundary of 
1 a I = 1 in the form 

the region of stability 

(2.1) 

‘Ihen the solution along the resulting boundary will have the form 

Y(E) = 2 YY(E)4” (2.2) 
v-0 
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Here the y,(t) are determined by the system of equations 

&n -t- $ (a, - 4t),)y,_, = 0, a,-cf 

Y==O 
(2.3) 

which is obtained as the result of substituting (2.1) and (2.2) into 

(1.1). The requirement y,([+ 277) = y,,(c) must determine Equation (2.1) 

of the sought boundary, and also the periodic solution (2.2) along this 

boundary. The condition of periodicity will be fulfilled automatically 

if one seeks the solution of the system (2.3) in the form 

yP = 2 2 (yzP co5pp5 t yLp sinpE) (2.4) 
p=o 

Suppose, furthermore, that 

Then the substitution of (2.4) and (2.5) into (2.3) yields the follow- 

ing system of equations in yPP and a;: 

: ‘p--y+,,g [82p_i_g,,,i. t 82P--q,m -.- 6,,.-,~~ .m 1) = )r: la, -- m2 &d Gv. m 

Here aRn is Kronecker's symbol. Let us introduce the notation 

-!- 
J%l L-z -+ &m+q),z -I- %(rn-_q)/2 -t (P&l--m)/2 

Q$m=(P f) + v.jm P 12 -_ rp~m-s)/2 ‘f” G&w2 

In the new notation the system (2.6) can be rewritten 

compact form 

(2.T) 

in the more 

One can make the following remarks with regard to the introduced 

quantities (2.7): 
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a) Since in (2.5) the sumnation starts with one, q&hf = 0 when k 4 0; 

therefore, the terms ~&*~a_ *j/z and +,,*~q_:a),~ cannot occur simul- 
t I 

taneously on the right-hand side. 

b) ‘lhe right-hand side vanishes 
m are odd. ‘lhus, the sumnation 

;12.8) on even indices when m is an 
is odd. Hence 

if m + q and, hence, also m - q or 

on q should actually be performed in 
even number, and on odd indices if m 

Py+,,, = Q$m = 0 (q + ml = “1 + 1, 1 = OJ,...) 

Let us consider the solution of the system (2.8). Setting ~1 = 0, we 
arrive at the following equations: 

[a, - m2] y&, = 0 

which have non-trivial solutions for baa* only if aa = n2 (n an integer). 
Suppose that aa = n2 f-9. Then ~~a* = 0, m fl n and the quantities ~a,,* 
are arbitrary. Setting next ,u = 1, we obtain the system of equations 

From this it follows that 

g$jj = & b'%y& --t Qknyih * (nfm) (2.9) 

When m = n we obtain the conditions which determine ~a,,’ and al,,: 

r&a - a,, I& $ Q,T,n& = 0 (2.10) 

The system (2.10) admits a non-trivial solution if 

QL PiA - al, 

Pk - al, 
=O 

Qlnn 

Assuming that 

= hJ;L,YS [Gz12#0 

and noting that P;,,, + QL,,,, = 0, we find 

(2.11) 

(2.12) 

N ow we can determine, up to within an arbitrary factor, the ~a,,j* (the 
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index j was introduced to distinguish between two possible solutions of 
the system (2.10)). F ram (2.9) we can determine (again up to within an 
arbitrary factor) the yl,jf. Ihe yl,Jf remain arbitrary. 

Setting p = 2, we are led to the following system: 

Here, the quantities on the right-hand side are known except for the 

Ylli ji. For their determination, as well as for the determination of the 

c20J, one can obtain the following equations by setting n = n: 

$ 2 IQ$rn~~~v.~ -i- P?&~&I = i &II%,,,~ 
v=1 i? "Tee1 

Let us rewrite the system obtained and express the unknowns explic- 
itly: 

Q~~~~~ -i- r Gz - &] y;l;; - a:‘,& == - (Q~~~~ + * * . 1 

[P$,n -a:&{: + Q&,yj;;;- a;&:= -[Pzfn,& + . . . ] (2.14) 

In this form 

coincides with the determinant of the system (2.10), and, therefore, in 
place of 

we can introduce new variables 

‘Iben the system (2.14) takes on the form 
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where 

From Equations (2.15) it can be seen that a2sj takes on an exact value 
(it depends on QSnnf, P2,,,*, yen J-/yonj+) while Yr,,J depends linearly on 

yotl J*, namely, just as yonj*, it is determined 
factor. lhe YZnjf remain arbitrary and will be 
step. 

Let us consider the case of an arbitrary p. 

except for a muliplicative 
determined at the next 

If m f n we have 

On the ri t-hand side of (2.16) stand known quantities, except for 
the y 

.P- l,a’ 
P 

which are determined by a system obtained from (2.8) by 
setting m = n: 

Here, just as in the preceding equation 

QiL 
A (Y&J = P+ 

PGn - uj In 

ml-47, Q,, =’ 

Therefore, setting 

we obtain a system in terms of aPnj and YP_ I sj 
t 

where on the right-hand side are 
From the system (2.17) it can be 

&&, - Q&,&,Y&,,n = . . . (2. lij 

terms which are linear in the yyk i* . 
2 

seen that the a have exact values; 
the quantities YP_ 1 ,,j 

B< 
can be determined to wit in the above-mentioned , 

factor, and hence Y _ 1 n i* 

while the yP,,j* *’ 
are also determinable to within this factor, 

still rkmain arbitrary. 

lhus, if 1&s+ 1 2 + E$,,, 1 2 +I 0, the method developed above makes it 
possible to construct the equations of the boundaries of the regions of 
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stability in the form 

(2.&q 

and to determine the periodic solutions along these boundaries 

yj = 2 2 (yi- cos & + yi; sin pg) q' (2.19) 

Pl* 

The formulas obtained permit one to make several general assertions 
relative to the properties of the periodic solutions and the boundaries 
of the regions of stability of the initial equation, Starting from the 
fact that P ’ and Q 
even or botg’:dd, *we 

’ are different from zero when q and m are both 
“CZLude that the solutions which can exist along 

the curves a = u,J (q), and which for q = 0 pass through a(O) = n2 (n 
even), contain only even harmonics yyk’, that is, the 

4 
are periodic of 

period R. Indeed, from (2.9) it follows that the ylrJ are different 
from zero only for even m. The formulas for y2=jf also show that m is 
even, for the station is carried out in them only over even q. E’Jy 
assuming that up to p - 1 the solutions contain only even harmonics, we 
can conclude on the basis of (2.16) that the pth solution has the same 
property, which proves the truth of the stated assertion..An analogous 
assertion’is true for odd n. From the results obtained it follows also 
that the region which lies between the curves a,,‘~ ’ and an+ 1 2,1 , and 
contains the axis q = 0, is a region of stability, since along the axis 
q = 0 the original ewation has a stable solution. 

We note that through the point (0.0) in the aq-plane there passes a 
curve a = so(q) below which there are no regions of stability. Indeed, 
when p = 0, we have the solution yOrf = 0, m f, 0; the quantity yoo+ is 
arbitrary. The quantity yoO- = 0 because the original equation does not 
have an odd periodic solution. ‘Ihe following system (I* = 1) has a solu- 

Setting, finally, p = 2, we are led 
y2, If (m f* 0). When m = 0, this system 

- a&$ = - c P&Y& t QIQoYG , 
rl 

Since Qvqo’ = Pvqo- = 0, the second 

we obtain 

_ 1 
Ylnl = -.- -- 

ns Q&&k 

to a system which determines the 
takes the form 

sum vanishes identically. For o20 
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because P 
uq” 

’ = P ,,opt and Q,,@- = Q,,opt. From here on the solution is 

carried out the same way as in the case n # 0. 

Before we pass to the consideration of the case when the condition 
(2.11) is violated, let us note that the results can be considerably 
simplified if @(q, [) = @(q, - 5). In this case QVqn: = 0, and the system 
(2.8) can be split into two systems relative to y,, and yPq-, taking 
on the form 

If one introduces into the discussion the quantities 

then the general solution can be expressed in the form 

The results an1# 2 and yn* then become 

Let us now consider the case when condition (2.11) is satisfied. In 
accordarqe with (2.121, alnJ = 0, and therefore all the terms which con- 
tain yl, J* will vanish in the system (2.14J.We must require now that 
this system has a non-trivial solution yen. For this purpose we express 
the terms remaining on the right-hand side in terms of yOnjf (in accord- 
ance with (2.9)). Thus, we obtain 

Here 
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Hence, the condition 

Ln Ml& - a;* = 
N,,-aa R, 

0 

will yield two values for a2,, j. After this we find Y,.,,,j* except for an 

arbitrary factor. In conclusion, we note that the violatibn of the condi- 

tion (2.11) indicates the absence of the 2nth harmonic in the function 

Q,(E), and leads to an expansion of the region of stability near the 
point q = 0, a(O) = n2 (in Fig. 1, condition (2.11) holds; in Fig. 2, 
the condition (2.11) is not satisfied). 

3. Construction of solutions within the region of stahil- 
ity. Within the considered regions of stability the form of the solutions 
given by Floquet’s theory can be made more precise. The method developed 
above permits one to construct solutions of period ~RS, which are realized 
in the region of stability along the curves a = a(q) which pass through 
the points a 1 Q= ,, = ( Z/S)~, where (I/s) is an irreducible fraction. 

-.-.A___ 

I 
_-.__ -- 

4 4 

Fig. 1. Fig. 2. 

As above, we shall look for a solution, along the indicated curves, 
in the form 

(3.j) 

‘Ihe equations of the curves along which such solutions can exist we write 
in the form 
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us (qj = p. G8q’ + (+) 

Then the discussions which 
regions lead to the following 

Y 
“=I 

led to 
system 

(3.2) 

the construction 
of equations: 

of the stability 

Here, in analogy with (2.71, we have introduced the notation 

P$ = & Cp$ (q+m)/zs + CPS: (m-q)/2s + 6 (n-m)/zs 

Q 
tk 
vqm = (pY. (q+m)/28 t Cp;: (m--cl)/26 T G. (q-mw 

(3.4) 

In spite of the external similarity of the system obtained with the 
system which determines the equations of the boundaries of the stability 
regions, the nature of the solutions of the obtained system is quite 
different. In order to establish this, let us consider the properties of 
the number P 

v!fm 
* and Qypl 

‘* and QVq:’ (which for s = 1 coincide with the terms 

P * 
s?that 

introduced earlier. On account of (3.4) one can easily 

P Sit - Ps,Zq, vpm - Q8v;fm = QZ& 

lhis system of relations is valid for arbitrary s (in particular, for 
s = 1). However, if s f 1, one obtains a set of relations which are not 
true for the case when s = 1. Let us consider the terms P sf and 

Q VP '* in which one of the indices q or m is equal to 1, zl%r, as above, 
l/s is an irreducible fraction, i.e. 1 flks, k = 0, 1, . . . . Then one 
can show that on the right-hand side of (3.4) only one of the terms can 
be distinct from zero. Indeed, the index t of any term htf distinct 
from zero must be a positive integer. Hence, the only terms which can be 
simultaneously different from zero are either Affl+ qj,2s and 

+uf+ q)/2s Or %:b+ q) /2s and %f( p --.a) ,28’ Of these terms only one 

is found to be distinct from zero if m = 1 or q = 1. Indeed, suppose 

+* v,(l+ q)/2s and +l& 1 - q) /2 8 are different from zero. Then it is neces- 

sary that 2 + q = 2kls and 1 - q = 2k,s, where k, and k, are integers. 
From this it follows that 2 = (k, + k2)s, which contradicts the 
previously agreed condition that 1 f ks. If one assumes that the second 
pair is distinct from zero, then the requirement that 1 + q = 2kls and 

9- I = 2k,s leads again to the contradiction that I = (kl - k2)s. ‘Ihe& 
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conclusions make it possible to note a number of special properties of 

the numbers (3.4). We find that 

Next, suppose that I#~'~~+ qJ,28 is distinct from zero. 'lhen 

P$ = - P”,,l, Q:$ = 0:; (3.T) 

If, however, #J,,**(~ _g,,2s is different from zero, then we have , 

P$ = x,1, QSyi$ = -Q:;' (3.8) 

Equations (3.7) and (3.8) cannot hold simultaneously. 

Let us consider the solutions of (3.3). For p = 1 we obtain 

ps,& &; -I- Q;,T,ys~ = a,“y;;~,l 1. !!!? $; (3.9) 

From this, with m ft I, it follows that 

(3.10\ 

In case, however, that I = I we find that ala i 0, since Plllsf = 

Q sf 
112 = OS 
Setting p = 2, we obtain a system of equations of the form 

2 [p$&; + Q&&] _I_ ~;&&- _I_ Q;;m& L_ &&, _f+ 1”-L” &% 
s2 

(3.11) 

11 

Substituting Expression (3.10) into the system (3.11), we are led to 

a system of equations in yols (homogeneous for m = I) from which we re- 

quire that it have a non-trivial solution when m = 1. The last require- 

ment must determine aZa. If we make the indicated substitution, we 

arrive at the following relation: 

lbe above-mentioned properties of the numbers P and Q make it possible 
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to establish that 

Ps;t;P$ f Pp;; z [P;*$p, 

and also that 

‘These identities which are false in case s = 1 alter the solutions of 
the system, which now has only one solution if 

a; .:-= 2 V’$Ja + lQ;$lz 

P 
(P - QZ)/SS 

And thus, the yO ISf remain arbitrary and are not interconnected. The 
remaining computations do not present any difficulties (they proceed as 
in the case of the finding of the boundaries), and lead to the con- 
struction of two independent solutions (this is different from the case 
of finding the boundaries, where along each boundary there was found 
only one periodic solution). 

Thus, the curve, along which there can exist a solution of period 
2as, is given up to within the second approximation by the equation 

(3.13) 

form 

On the other hand, if condition (2.11) is satisfied, the equation of 
the boundary passing through the point al a=O= n2 can be written in the 

‘I* 

q+*** (3.14) 

Since the last expansion begins with linear terms in 4, there arises 
the question whether the curves (3.13) and (3.14) can intersect if l/s 
is near n, while q is sufficiently small. We shall show that this cannot 
happen. 

The condition of sufficient nearness of 
the form 

Ifs = n -I- O/s 

where 8 is a positive or negative integer, 

l/s to n we shall write in 

(3X5) 

If one selects s large enough, 
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such that ( O/s1 < 6 (0 is fixed), then 1 Z/s - n 1 < 6. (In Equation 
(3.15) 8 < 0 when j = 1, and.! > 0 why j = 2). For the proof we note 
that Fvlpsf = Fvnnf and Q 

VlP = Qvnn whenl=ns+eandp=ns-8. 

After this it is not difficult to see that the largest term in 

will, for a sufficiently large s, be 

Vlt;,n12 -I- @k121 & 

Therefore, one can investigate the intersection of (3.14) with 

&t these curves cannot intersect since the equation oaj = a** does not 
have a real root, as is easily verified. lhis completes the proof. 

‘lhus, the structure of the stability regions is as follows: the 
region of stability is everywhere densely filled with curves of the form 
(3.13); along these curves there can exist two linearly independent solu- 
tions of period 2as. These curves intersect the axis q = 0 orthogonally 
at the points rzl 9= 0= (Z/S)~, where l/s is an irreducible fraction. 

In conclusion, the author expresses his deep gratitude to 1u.N. 
Dnestrovskii for a number of valuable suggestions. 
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