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1. Basic propositions. Let us consider the equation

n

V-0 )y=0, O@H=0@ i+, (C&=0 (1)

Floquet’s [1-3 ] theory for this type equation leads to the following.
Suppose that a fundamental system of solutions y,(£) and y,(£) is known,
then

Yy (8) = y1 (E + o) = any; (§) + a1y (§)
Yo (8) = yo (E + 7) = anytr (§) + aaay2 (§)

is also a fundamental system, and the C; can be determined in such a way
that X(£) = C,Y,(£) + C,Y;(£) will satisfy the relation X(¢ + ) =p X(£),

where p is determined by the condition

an a2

an — a2
e =0, a a
21 22

223} azz — P

so that
9=°°:|:Va2—1, o =oa(a, q) = (ay -+ as)/2

Let us now consider three possible cases.

1) The inequalities — 1 < a@ < 1 determine in the ag-plane a region
where the solutions have the form

432
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X, (€) = 1 () 005 2 — y (B) sin o

X3 (B) = V2 (E) cos o + 1 (B) sin -

- — 2 A
a 1(1 a)_

Vi (8) = i (§ + m), 6 = tan

2) In case |a| = 1, certain lines are determined on the ag-plane.
Along these lines the solutions are of period # or 27.

X(E+n) =+ X ()

3) Finally, the inequalities @ > 1, @ < — 1 determine a region in the
agmplane. In this region the solutions can be expressed in the following
form:

o= oxp(P2E) s @) Lusle +m) = Lua®),  Bua=Infack(a — 1))

It is not difficult to see that in the first case the solutions are
non-increasing, that in the third case they are unstable in the Liapunov
sense, and that the region |a]| < 1 is a region of stability of the
initial equation. The curves |a| = 1 determine the boundaries of the
region of stability in the ag-plane.

Below, we give investigations of the boundaries of the regions of

stability for Equation (1.1), of the periodic solutions in the region of
stability.

2. Construction and properties of the boundaries of the
regions of stability. Let

D(g,8) = D) D(E)g

v=1

in Equation (1.1).

We shall seek the equation of the boundary of the region of stability
|a] =1 in the form

alg) = 2 g (2.1)

Then the solution along the resulting boundary will have the form

yE) = X niE)e (2.2)

v=0
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Here the y, (£) are determined by the system of equations
e

Y+ X (ay— D)) yuv =0, ®, =0 2.3)
v=y0
which is obtained as the result of substituting (2.1) and (2.2) into
(1.1). The requirement y, (£ + 27) = y,(£) must determine Equation (2.1)
of the sought boundary, and also the periodic solution (2.2) along this
boundary. The condition of periodicity will be fulfilled automatically
if one seeks the solution of the system (2.3) in the form

Yp = 2 2 (yj‘p cos pE -+ yup sin pk) (2.4)

P=0

Suppose, furthermore, that

D, =2 Z (cp‘"f; cos 2pE -1 @up sin 2pE) G

p=1

Then the substitution of (2.4} and (2.5) into (2.3) yields the follow-
ing system of equations in Yup and a;:

¥ b—
2 2 Z {(Pv*x;yu—v,q [82p +a,m — Bap—q.m + Bop—q.—m] -+ (2.8)

wa=1 =1 q==0

H
(D;‘;) y;t*”-‘} [62114.-!;.1)1 O qm — 62p~q,—~~m} } o= 2 fa, -— m? 8] Yp—v,m

v=g
“ 1
RIS (@b Yol Bspram + Bap—qum - Bep—gn]
v=1 p=1 =0
- — b 4
“+ Quplp—v.q [82p—q.m— Bappa.m+ 8op—g.-ml) = Z [ay — m20u 1 Yy—v, m
sy

. . . .
Here 8, is Kronecker’s symbol. Let us introduce the notation
4 ; -
Pigm == (Pj,_(m+a)/2 + (Pt(m—qm + PVlia—mr2 (2.7)
+ — —_— J— —
Qiam = Quimtay2 = Pom—ayz T Pv,ig—mye

In the new notation the system (2.6) can be rewritten in the more
compact form

B -
G L otk R + .
2 2-} [Q:q-m y;,\-—v,q 1 P‘?;Im flp.—v-v,q ] == 2} {(l\, - Iflz(s\,,o} yp“"‘/,m (_28)
v=1 g==0 Yoo

One can make the following remarks with regard to the introduced
quantities (2.7):
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a) Since in (2.5) the summation starts with one, ¢bk = 0 when k < 0;
therefore, the terms ¢9 (m—q)/2 and ¢b , (g—m)/2 camnot occur simul-

taneously on the right-hand side.

b) The right-hand side vanishes if m + g and, hence, also m ~ g or
q — m are odd. Thus, the summation on ¢ should actually be performed in
(2.8) on even indices when m is an even number, and on odd indices if m
is odd. Hence

P\—atqm:();%mzo (@+m=2+41, 1=0,1,...)

Let us consider the solution of the system (2.8). Setting p = 0, we
arrive at the following equations:

[(1 - ”12] y()im =0

which have non-tr1v1al solutions for yo_ only if g, = n? (n an integer).
Suppose that a, = n? £90. Then yo =0, m#£ n and the quantities y0ni
are arbitrary. Settlng next p = 1, we obtain the system of equations

Pﬁmyﬁ_tx + Qlﬁmy(_)T;l = amy(_li;n + (n* —m?) y;i;n
From this it follows that
l/ll;n = mz [Pmmy(m + Qmmyon] - (rsEm) (2-9)
When m = n we obtain the conditions which determine yOni and a; :
[PEn — @in 1Yon + Qanlion = 0 (2.10)

The system (2.10) admits a non-trivial solution if

ann P;m — Qyn —0
Pmn — ayn Q;m
Assuming that
Qfn  Pian ) 14
! ! [(Pln} + [(pln]2:/:0 (211)
Pitlﬂ lnﬂ
and noting that P}, + Q[ =0, we find
an Pl |
aln = (— 1) (=12 {2.12)
11m ann

Now we can determine, up to within an arbitrary factor, the yOnji (the
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index j was introduced to distinguish between two possible solutions of
the system (2.10)). From (2 9) we can determine (again up to within an
arbitrary factor) the yll . The y,,/ J* remain arbitrary.

Setting u = 2, we are led to the following system:

SQEnyIE - PhyiT +Qhmyit -+ (2.13)
4
-+ qumyo;?] = ain ?]iﬁ - a‘gn ygi -+ (n2 — 1112) yéfn

Whence, if m £ n, we obtain

i+ . .
yém = g m2 {2 Z [qum y’%v a-+ vqm 3{2-)-.-‘;,111 - Qinyiﬁ}

vt g
Here, the quantities on the right-hand side are known except for the
Y qu g Y
yln] For their determination, as well as for the determination of the
2n3, one can obtain the following equations by setting m = n:
Z Z ()W;myz-—v q - qumy.—v q] = 2_1 avny)—z n -
v=1 q -

Let us rewrite the system obtained and express the unknowns explic-
itly:

QFnyit - [Piun — alnl yin — aényf;: s — [Qantiit + .-+ 1
[Phn — aln] Y -+ Qrantin — ayit = — (Phayin +...1  (2.14)
In this form
ann P an — “{n
(yl }= ; - =0
" i inn a{n le;

coincides with the determinant of the system (2.10), and, therefore, in
place of

Qbnyin 4 [Pian— adnl yin
we can introduce new variables
Y{n = Jm -+ [ann] Y Pian— aiin] yi’.{
Then the system (2.14) takes on the form

aény"— —_ Yi}nQi{;n == Q;};myéj 4+,

’l‘m‘/on - Ylnen an = ;nnyg): + (2.15)

o
=
it
~
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where
Qhn  ¥in
ehQhn  vin

- + i
) Olnn = e mn " in

‘:;!:0, &n = — ==

— al
Plrm 1n ann

From Equations (2 15) 1t can be seen that azn' takes on an exact value
(it depends on ann » Py t Yon _/yo J* ) while Y, J depends linearly on

Yon 7%, namely, just as y, . J* it is determined except for a muliplicative
factor. The yzn]t remain arbitrary and will be determined at the next
step.

Let us consider the case of an arbitrary p. If m# n we have

B p—1
- 1 i L3t ST
V= | 2 D Py + QhntiTual — 2 auyiEun (216)

v=1 ¢q =]

On the right-hand side of (2.16) stand known quantities, except for
the Yo ] which are determined by a system obtained from (2.8) by
setting m = n:

Qith&tl.n -1 [pl_nn — ai’n] y}JL——l,n— afmy?): =

iyt — i i it
[Plnn - al‘n] yp——l,n "i— annyp—l,n e apnyon = e

Here, just as in the preceding equation

ot Pian— 4]
A (y “ 1) = ;‘" ] _nn "= 0
Plﬂ’n ln Q[nn

Therefore, setting

Yi im =y 1nt [QFen)  [Pinn — alnl Yi1n

we obtain a system in terms of a'un-’ and Y, _ l,n]

Had, — QhnelYi = .. (2.17)

Yin Gpon — an)’p_l |
where on the right-hand side are terms which are linear in the Yo
From the system (2.17) it can be seen that the a, J have exact values,
the quantities Y -1, n’ can be determined to w1tﬁ1n the above-mentioned
factor, and hence Y -1, n-’i are also determinable to within this factor,
while the Yun 7% still remain arbitrary.

Thus, if [(,‘151,'+ 12 4+ (o), 12 £.0, the method developed above makes it
possible to construct the equations of the boundaries of the regions of
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stability in the form
=n? L Zai q* (2.18)

and to determine the periodic solutions along these boundaries

= 2 2\ (y cos pk + yiz sin pE) e (2.19)
PP

The formulas obtained permit one to make several general assertions
relative to the properties of the periodic solutions and the boundaries
of the reglons of stab111ty of the initial equation. Starting from the
fact that P, v qn * and Qv x are different from zero when g and m are both
even or both odd, 'we conclude that the solutions which can exist along
the curves a = a 7(q), and which for ¢= 0 pass through a(0) = n? (n
even), contain only even harmonics yvki, that is, the¥ are periodic of
period 7. Indeed, from (2.9) it follows that the yll are different
from zero only for even m. The formulas for y2.1 also show that m is
even, for the summation is carried out in them only over even q. By
assuming that up to g — 1 the solutions contain only even harmonics, we
can conclude on the basis of (2.16) that the pth solution has the same
property, which proves the truth of the stated assertion. An analogous
assertion’is true for odd n. From the results obtained it follows also
that the region which lies between the curves a_''2 and a, ., 12’1, and
contains the axis ¢ = 0, is a region of stability, since along the axis

= 0 the original equation has a stable solution.

We note that through the point (0.0) in the ag-plane there passes a
curve a = a,(q) below which there are no regions of stability. Indeed
when ¢ = 0, we have the solution y0 = 0, m £ 0; the quantity yo0 is
arbitrary. The quantity y,,” = 0 because the original equation does not
have an odd periodic solution. The following system (u = 1) has a solu-
tion of the form

1 - _ 1 Ak
?/?;n = pmmyojrr;, Yim = — +5 QIOmy(_)’(_}

Setting, finally, p = 2, we are led to a system which determines the
¥s mi (m #£:0). When m = 0, this system takes the form

— anoydy = — 2 Pty 1 Qrao¥ia » 0 = N Qfylz + Piao¥ia
q q
Since Q = P;qO' = 0, the second sum vanishes identically. For a,,

we obtain



Equation with periodic coefficients 439

Agp = —Z 2 {[P l()xoq

From here on the solution is

because Pqu = P;Oq and Qqu- =

carried out the same way as in the case n £ 0.

+
voq °

Before we pass to the consideration of the case when the condition
(2.11) 1s violated, let us note that the results can be considerably
simplified if ®(q, £) = ®(q, — £). In this case QV m, = = 0, and the system
(2.8) can be split into two systems relative to ypq+ and y#qa, taking
on the form

P

3 3 Pl 0= 3 alzyE b (n?—m)yE, (2.20)

v=1 q v==]
If one introduces into the discussion the quantities

[y ] ypq' lpg:m - Z ZJ qumxlf—"- q

v=1 g
then the general solution can be expressed in the form

.
1
M = s i — 3 i w =2 D P, (220)
v==x] v=1 @
The results an1'2 and ynt then become
ar=3 ke bty =y D DaE{ et @22
p=1 =0 v=-0

Let us now consider the qase when condition (2.11) is satisfied. In
accordance with (2.12), a,.7 = 0, and therefore all the terms which con-
tein y, J * will vanish in the system (2.14).We must require now that
this system has a non-trivial solution Yon- For this purpose we express
the terms remaining on the right-hand side in terms of y,J * (in accord-
ance with (2.9)). Thus, we obtain

+ | [Mn_"agn]y{; = 0, [Np-— (17 ]y;+ I It’ny e ()

Here

Ly an — § {anan i qu()it}n} i- ()g:m
q
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M, = ) n2 e {P;mplnq - Q;Znol—nq} -+ P;nn
q

2}22 z {I 1qnpl+n(1 i QGanT’;lq} + p;r_m
q

= D Pilina | CnPind 4 05,
q

Hence, the condition
L M_—al

n n 2n

N,—al, R,

i
o

will yield two values for aznj. After this we find y‘.mji except for an
arbitrary factor. In conclusion, we note that the violation of the condi-
tion (2.11) indicates the absence of the 2nth harmonic in the function
®,(£), and leads to an expansion of the region of stability near the
point g = 0, a(0) = n? (in Fig. 1, condition (2.11) holds; in Fig. 2,

the condition (2.11) is not satisfied).

3. Construction of solutions within the region of stabil-
ity. Within the considered regions of stability the form of the solutions
given by Floquet's theory can be made more precise. The method developed
above permits one to construct solutions of period 2ms, which are realized
in the region of stability along the curves a = a(q) which pass through
the points a| g=0 = (1/s)2, where (l/s) is an irreducible fraction.

al
nt
! :
| 1
- ! —_——t—
¢ 4
Fig. 1. Fig. 2.

As above, we shall look for a solution, along the indicated curves,
in the form

w1 8

2/; 2 <y81 cos »-——E -+ I/’”' sin gt ) (3])
L

The equations of the curves along which such solutions can exist we write
in the form
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@@= 3 o + (<) (3:2)

v=1

Then the discussions which led to the construction of the stability
regions lead to the following system of equations:

21 Z[Psimyp~» a+ qum p—v, ql = i 3?/:Ev m [(_ls_)z_ (‘{‘:“)EJ yﬁn (3.3)

v==1 q v=1

Here, in analogy with (2.7), we have introduced the notation

p %m =4 (Pj: (g+myjes T+ 9y, (m—q)es + P, (q—m)zs (3.4)
Qfn = O3 (e+myzs == @v, (m—ayjes T Fv, (a—myes

In spite of the exterral similarity of the system obtained with the
system which determines the equations of the boundaries of the stability
regions, the nature of the solutions of the obtained system is quite
different. In order to establlsh this, let us consider the properties of

the number P;q. and Q * (which for s = 1 coincide with the terms
PLq. and Q 1ntroduced earlier. On account of (3.4) one can easily
see that

P:a:m = Pvmq: ng—m = err_nq

~
This system of relations is valid for arbitrary s (in particular, for

s = 1). However, if s # 1, one obtains a set of relations which are not
true for the case when s = 1. Let us consider the terms P, .‘i and

Q, .si in which one of the indices g or m is equal to I, when, as above,
l/s is an irreducible fraction, i.e. l £#%ks, k=0, 1, ... . Then one
can show that on the right-hand side of (3.4) only one of the terms can
be distinct from zero. Indeed, the index t of any term ¢$t distinct
from zero must be a positive integer. Hence, the only terms which can be
simul taneously different from zero are either ¢V (n+ q)/2s and

¢b (n—q)/2s OF ¢b (n+ q) /25 and ¢b (q—m) /25" Of these terms only one
is found to be distinct from zero if m = | or g = 1. Indeed, suppose

¢5f(l+-q)/2s and ¢bi(l_,q)/23 are different from zero. Then it is neces-

sary that 1 + g =2k ;s and | —~ g = 2k,s, where k; and k, are integers.
From this it follows that I = (ky + k2)s, which contradicts the
previously agreed condition that 1l # ks. If one assumes that the second
pair is distinct from zero, then the requirement that l + ¢ = 2k;s and
g — 1 =2k,s leads again to the contradiction that I = (k) — k )s These
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conclusions make it possible to note a number of special properties of
the numbers (3.4). We find that

(P12 = [Pq)? = PSR = [P, )2 (3.5)

and also

(Q35) = [Q%)® = (QU)® = [Qoa)? (3.6)

Next, suppose that ¢bi(l+ @ /28 is distinct from zero. Then

Pla=—Pg,  Qui=0Q%u (3.7)

If, however, ¢5ii(l-—q)/2s is different from zero, then we have

\sﬂ;i = \sJ;iy qul _ qul (3.8)
Equations (3.7) and (3.8) cannot hold simultaneously.

Let us consider the solutions of (3.3). For p = 1 we obtain

12— m? 55

Pllm yol - Qll F = alsygliﬁml 1 - 2 Yim (3.9

From this, with m # I, it follows that

s+ §F 8%
yE = s Plim¥or_+ Qum¥or (3.10)

m 12— m?

In case however, that m = I we find that a1 = 0, since Plll st
Q™=

Setting p = 2, we obtain a system of equations of the form

s+ 8-+ sF l - 2 8
2_\ [qumyw lqmym] -1 Pﬂﬁ?yts)—?t -} Q;lmyol = 02./01 6lm -+ ‘**”)'l‘ Jz;; (3.11)

Substituting Expression (3.10) into the system (3.11), we are led to
a system of equations in y,;* (homogeneous for m = 1) from which we re-
quire that it have a non-trivial solution when m = l. The last require-
ment must determine a,®. If we make the indicated substitution, we
arrive at the following relation:

i

S:tP8+ s+ P s:EPs 3T
2 PiaiPiiq -+ qulQHq] 3(11021_"*‘11[)/81‘qu11¢1 + Qyq1P1iq] Yol L l;yf,f 3.12)

The above-mentioned properties of the numbers P and Q make it possible
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to establish that
P:«;IPU(] = pfapmt = [pnq} » ();:;(;qul = qulQllq = le!q
and also that
ta Qua |- QiarPiia = Piqu Qi -+ PiaQiii ==

These identities which are false in case s = 1 alter the solutions of
the system, which now has only one solution if

s I uq]z“"{Qﬂq
e Z (I — g®)s®

q

And thus, the yolst remain arbitrary and are not interconnected. The
remaining computations do not present any difficulties (they proceed as
in the case of the finding of the boundaries), and lead to the c¢on-
struction of two independent solutions (this is different from the case
of finding the boundaries, where along each boundary there was found
only one periodic solution).

Thus, the curve, along which there can exist a solution of period
2ns, is given up to within the second approximation by the equation

1y (PI1 + 1Q15 1 ,
a¥ == <-s—-) ~AE—- {Z ——W—} q2 ST (3.13)‘
P
On the other hand, if condition (2.11) is satisfied, the equation of
the boundary passing through the point a| 0= n’? can be written in the
form
thn Pran |7

@) = n? 4 (— 1) q+... {3.14»

e —
Plnn ann

Since the last expansion begins with linear terms in g, there arises
the question whether the curves (3.13) and (3.14) can intersect if I/s

is near n, while g is sufficiently small. We shall show that this cannot
happen.

The condition of sufficient nearness of l/s to n we shall write in
the form

Ifs =n-0/s (3.15)

where 6 is a positive or negative integer. If one selects s large enough,
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such that |0/s| < e (0 is fixed), then | l/s - n| < ¢. (In Equation
(3.15) 6 < O when j = 1, and € > 0 when j = 2). For the proof we note

that P;lps* = Pvnni and Qvlpsi = me:t when l = ns + € and p= ns - 4.

After this it is not difficult to see that the largest term in
J [PIG1E + QR
(B pY)s
D
will, for a sufficiently large s, be
{PEal® + (QFnl® g

Therefore, one can investigate the intersection of (3.14) with

4 ('—i‘)z A (P nl® 4 (QFanl®) g ¢

But these curves cannot intersect since the equation a / = a** does not

have a real root, as is easily verified. This completes the proof.

Thus, the structure of the stability regions is as follows: the
region of stability is everywhere densely filled with curves of the form
(3.13); along these curves there can exist two linearly independent solu-
tions of period 27s. These curves intersect the axis g = 0 orthogonally
at the points a| g=0~ (1/s)?, where l/s is an irreducible fraction.

In conclusion, the author expresses his deep gratitude to Iu.N.
Dnestrovskii for a number of valuable suggestions.
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